miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy.

نویسندگان

  • Zhiqiang Lin
  • Iram Murtaza
  • Kun Wang
  • Jianqin Jiao
  • Jie Gao
  • Pei-Feng Li
چکیده

Cardiac hypertrophy is accompanied by maladaptive cardiac remodeling, which leads to heart failure or sudden death. MicroRNAs (miRNAs) are a class of small, noncoding RNAs that mediate posttranscriptional gene silencing. Recent studies show that miRNAs are involved in the pathogenesis of hypertrophy, but their signaling regulations remain to be understood. Here, we report that miR-23a is a pro-hypertrophic miRNA, and its expression is regulated by the transcription factor, nuclear factor of activated T cells (NFATc3). The results showed that miR-23a expression was up-regulated upon treatment with the hypertrophic stimuli including isoproterenol and aldosterone. Knockdown of miR-23a could attenuate hypertrophy, suggesting that miR-23a is able to convey the hypertrophic signal. In exploring the molecular mechanism by which miR-23a is up-regulated, we identified that NFATc3 could directly activate miR-23a expression through the transcriptional machinery. The muscle specific ring finger protein 1, an anti-hypertrophic protein, was identified to be a target of miR-23a. Its translation could be suppressed by miR-23a. Our data provide a model in which the miRNA expression is regulated by the hypertrophic transcriptional factor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MicroRNAs that target RGS5

Objective(s):An earlier meta-analysis on gene expression data derived from four microarray, two cDNA library, and one SAGE experiment had identified RGS5 as one of only ten non-housekeeping genes that were reported to be expressed in human trabecular meshwork (TM) cells by all studies. RGS5 encodes regulator of G-protein signaling-5. The TM tissue is the route of aqueous fluid outflow, and is r...

متن کامل

Tiny transporters: how exosomes and calcineurin signaling regulate miR-23a levels during muscle atrophy. Focus on "miR-23a is decreased during muscle atrophy by a mechanism that includes calcineurin signaling and exosome-mediated export".

SKELETAL MUSCLE ATROPHY is characterized by an increase in protein degradation that is accomplished through a variety of cellular mechanisms. Significant attention has been given to the ubiquitin-proteasome pathway and to expression of the E3 ubiquitin ligases muscle-specific RING finger-1 (MuRF1) and atrogin-1/muscle atrophy F box (MAFbx) during muscle atrophy. The increased expression of thes...

متن کامل

miR-23a is decreased during muscle atrophy by a mechanism that includes calcineurin signaling and exosome-mediated export.

Skeletal muscle atrophy is prevalent in chronic diseases, and microRNAs (miRs) may play a key role in the wasting process. miR-23a was previously shown to inhibit the expression of atrogin-1 and muscle RING-finger protein-1 (MuRF1) in muscle. It also was reported to be regulated by cytoplasmic nuclear factor of activated T cells 3 (NFATc3) in cardiomyocytes. The objective of this study was to d...

متن کامل

MiR-490-5p Functions as an OncomiR in Breast Cancer by Targeting NFATc4

Breast cancer is a serious health problem worldwide in women. MicroRNAs are small non-coding RNAs of 18–25 nucleotides in length that post-transcriptionally modulate gene expression. MiR-490 has been reported as a tumor suppressor and oncomiR microRNA in breast cancer with two separate targets, NFAT and Rho. NFAT is one of the targets for miR-490 but the relationship between hsa</e...

متن کامل

Downregulation of miR-23a and miR-27a following experimental traumatic brain injury induces neuronal cell death through activation of proapoptotic Bcl-2 proteins.

MicroRNAs (miRs) are small noncoding RNAs that negatively regulate gene expression at the post-transcriptional level. To identify miRs that may regulate neuronal cell death after experimental traumatic brain injury (TBI), we profiled miR expression changes during the first several days after controlled cortical impact (CCI) in mice. miR-23a and miR-27a were rapidly downregulated in the injured ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 29  شماره 

صفحات  -

تاریخ انتشار 2009